World Library  
Flag as Inappropriate
Email this Article

Transition state

Article Id: WHEBN0000849376
Reproduction Date:

Title: Transition state  
Author: World Heritage Encyclopedia
Language: English
Subject: Energy minimization, Asymmetric induction, Oxyanion hole, Enzyme catalysis, Inverse electron-demand Diels–Alder reaction
Collection: Chemical Kinetics
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Transition state

The transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. At this point, assuming a perfectly irreversible reaction, colliding reactant molecules always go on to form products.[1] It is often marked with the double dagger ‡ symbol.

As an example, the transition state shown below occurs during the SN2 reaction of bromoethane with a hydroxyl anion:

The DFT-determined geometry for the transition state of the above reaction.[2] Distances are listed in angstroms. Note the elongated C-Br and C-O bonds, and the trigonal bipyramidal structure.

The activated complex of a reaction can refer to either the transition state or to other states along the reaction coordinate between reactants and products, especially those close to the transition state.[3]

Contents

  • History of concept 1
  • Explanation 2
  • Observing transition states 3
  • Determining the geometry of a transition state 4
  • The Hammond–Leffler postulate 5
  • The structure-correlation principle 6
  • Implications for enzymatic catalysis 7
  • See also 8
  • References 9

History of concept

The concept of a transition state has been important in many theories of the rates at which chemical reactions occur. This started with the transition state theory (also referred to as the activated complex theory), which was first developed around 1935 by Eyring, Evans and Polanyi, and introduced basic concepts in chemical kinetics that are still used today.

Explanation

A collision between reactant molecules may or may not result in a successful reaction. The outcome depends on factors such as the relative kinetic energy, relative orientation and internal energy of the molecules. Even if the collision partners form an activated complex they are not bound to go on and form products, and instead the complex may fall apart back to the reactants.

Observing transition states

Because of the rules of quantum mechanics, the transition state cannot be captured or directly observed; the population at that point is zero. This is sometimes expressed by stating that the transition state has a fleeting existence. However, cleverly manipulated spectroscopic techniques can get us as close as the timescale of the technique allows. Femtochemical IR spectroscopy was developed for precisely that reason, and it is possible to probe molecular structure extremely close to the transition point. Often along the reaction coordinate reactive intermediates are present not much lower in energy from a transition state making it difficult to distinguish between the two.

Determining the geometry of a transition state

Transition state structures can be determined by searching for first-order saddle points on the potential energy surface (PES) of the chemical species of interest.[4] A first-order saddle point is a critical point of index one, that is, a position on the PES corresponding to a minimum in all directions except one. This is further described in the article geometry optimization.

The Hammond–Leffler postulate

The Hammond–Leffler Postulate states that the structure of the transition state more closely resembles either the products or the starting material, depending on which is higher in enthalpy. A transition state that resembles the reactants more than the products is said to be early, while a transition state that resembles the products more than the reactants is said to be late. Thus, the Hammond–Leffler Postulate predicts a late transition state for an endothermic reaction and an early transition state for an exothermic reaction.

A dimensionless reaction coordinate that quantifies the lateness of a transition state can be used to test the validity of the Hammond–Leffler Postulate for a particular reaction.[5]

The structure-correlation principle

The structure-correlation principle states that structural changes that occur along the reaction coordinate can reveal themselves in the ground state as deviations of bond distances and angles from normal values along the reaction coordinate.[6] According to this theory if one particular bond length on reaching the transition state increases then this bond is already longer in its ground state compared to a compound not sharing this transition state. One demonstration of this principle is found in the two bicyclic compounds depicted below.[7] The one on the left is a bicyclo[2.2.2]octene, which, at 200°C, extrudes ethylene in a retro-Diels–Alder reaction.

Structure Correlation Principle

Compared to the compound on the right (which, lacking an alkene group, is unable to give this reaction) the bridgehead carbon-carbon bond length is expected to be shorter if the theory holds, because on approaching the transition state this bond gains double bond character. For these two compounds the prediction holds up based on X-ray crystallography.

Implications for enzymatic catalysis

One way that enzymatic catalysis proceeds is by stabilizing the transition state through electrostatics. By lowering the energy of the transition state, it allows a greater population of the starting material to attain the energy needed to overcome the transition energy and proceed to product.

See also

References

  1. ^ Solomons, T.W. Graham & Fryhle, Craig B. (2004). Organic Chemistry (8th ed.). John Wiley & Sons, Inc.  
  2. ^ The calculation used a B3LYP functional and a 6-31+G* basis set.
  3. ^ Peter Atkins and Julio de Paula, Physical Chemistry (8th ed., W.H. Freeman 2006), p.809 ISBN 0-7167-8759-8
  4. ^ Frank Jensen (1999). Introduction to Computational Chemistry. England: John Wiley and Sons Ltd. 
  5. ^ Thomas A. Manz, David S. Sholl (2009). "A dimensionless reaction coordinate for quantifying the lateness of transition states". J. Comput. Chem.: NA.  
  6. ^ Buergi, Hans Beat; Dunitz, Jack D. (1983). "From crystal statics to chemical dynamics". Accounts of Chemical Research 16 (5): 153.  
  7. ^ Goh, Yit Wooi; Danczak, Stephen M.; Lim, Tang Kuan; White, Jonathan M. (2007). "Manifestations of the Alder−Rickert Reaction in the Structures of Bicyclo[2.2.2]octadiene and Bicyclo[2.2.2]octene Derivatives". The Journal of Organic Chemistry 72 (8): 2929–35.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.