World Library  
Flag as Inappropriate
Email this Article

Twisted pair

Article Id: WHEBN0000080506
Reproduction Date:

Title: Twisted pair  
Author: World Heritage Encyclopedia
Language: English
Subject: List of network buses, Ethernet over twisted pair, Local area network, TIA/EIA-568, Balanced line
Collection: Cables, Communication Circuits, Electromagnetic Compatibility, Signal Cables, Video Hardware
Publisher: World Heritage Encyclopedia

Twisted pair

Twisted pair cabling is a type of wiring in which two conductors of a single circuit are twisted together for the purposes of canceling out electromagnetic interference (EMI) from external sources; for instance, electromagnetic radiation from unshielded twisted pair (UTP) cables, and crosstalk between neighboring pairs. It was invented by Alexander Graham Bell.


  • Explanation 1
  • History 2
  • Unshielded twisted pair (UTP) 3
  • Cable shielding 4
  • Most common twisted-pair cables 5
  • Solid core cable vs stranded cable 6
  • Advantages 7
  • Disadvantages 8
  • Minor twisted pair variants 9
  • See also 10
  • References 11
  • External links 12


In balanced pair operation, the two wires carry equal and opposite signals and the destination detects the difference between the two. This is known as differential mode transmission. Noise sources introduce signals into the wires by coupling of electric or magnetic fields and tend to couple to both wires equally. The noise thus produces a common-mode signal which is canceled at the receiver when the difference signal is taken.

This method starts to fail when the noise source is close to the signal wires; the closer wire will couple with the noise more strongly and the common-mode rejection of the receiver will fail to eliminate it. This problem is especially apparent in telecommunication cables where pairs in the same cable lie next to each other for many miles. One pair can induce crosstalk in another and it is additive along the length of the cable. Twisting the pairs counters this effect as on each half twist the wire nearest to the noise-source is exchanged.

Providing the interfering source remains uniform, or nearly so, over the distance of a single twist, the induced noise will remain common-mode. Differential signaling also reduces electromagnetic radiation from the cable, along with the associated attenuation allowing for greater distance between exchanges.

The twist rate (also called pitch of the twist, usually defined in twists per meter) makes up part of the specification for a given type of cable. When nearby pairs have equal twist rates, the same conductors of the different pairs may repeatedly lie next to each other, partially undoing the benefits of differential mode. For this reason it is commonly specified that, at least for cables containing small numbers of pairs, the twist rates must differ.[1]

In contrast to shielded or foiled twisted pair (typically F/UTP or S/FTP cable shielding), UTP (unshielded twisted pair) cable is not surrounded by any shielding. UTP is the primary wire type for telephone usage and is very common for computer networking, especially as patch cables or temporary network connections due to the high flexibility of the cables.


Wire transposition on top of pole

The earliest telephones used telegraph lines, or open-wire single-wire earth return circuits. In the 1880s electric trams were installed in many cities, which induced noise into these circuits. Lawsuits being unavailing, the telephone companies converted to balanced circuits, which had the incidental benefit of reducing attenuation, hence increasing range.

As electrical power distribution became more commonplace, this measure proved inadequate. Two wires, strung on either side of cross bars on utility poles, shared the route with electrical power lines. Within a few years, the growing use of electricity again brought an increase of interference, so engineers devised a method called wire transposition, to cancel out the interference.

In wire transposition, the wires exchange position once every several poles. In this way, the two wires would receive similar EMI from power lines. This represented an early implementation of twisting, with a twist rate of about four twists per kilometre, or six per mile. Such open-wire balanced lines with periodic transpositions still survive today in some rural areas.

Twisted pair cables were invented by Alexander Graham Bell in 1881.[2] By 1900, the entire American telephone line network was either twisted pair or open wire with transposition to guard against interference. Today, most of the millions of kilometres of twisted pairs in the world are outdoor landlines, owned by telephone companies, used for voice service, and only handled or even seen by telephone workers.

Unshielded twisted pair (UTP)

Cross-section of cable with several unshielded twisted pairs

UTP cables are found in many Ethernet networks and telephone systems. For indoor telephone applications, UTP is often grouped into sets of 25 pairs according to a standard 25-pair color code originally developed by AT&T Corporation. A typical subset of these colors (white/blue, blue/white, white/orange, orange/white) shows up in most UTP cables. The cables are typically made with copper wires measured at 22 or 24 American Wire Gauge (AWG),[3] with the colored insulation typically made from an insulator such as polyethylene or FEP and the total package covered in a polyethylene jacket.

For urban outdoor telephone cables containing hundreds or thousands of pairs, the cable is divided into smaller but identical bundles. Each bundle consists of twisted pairs that have different twist rates. The bundles are in turn twisted together to make up the cable. Pairs having the same twist rate within the cable can still experience some degree of crosstalk. Wire pairs are selected carefully to minimize crosstalk within a large cable.

Unshielded twisted pair cable with different twist rates

UTP cable is also the most common cable used in computer networking. Modern Ethernet, the most common data networking standard, can use UTP cables. Twisted pair cabling is often used in data networks for short and medium length connections because of its relatively lower costs compared to optical fiber and coaxial cable.

UTP is also finding increasing use in video applications, primarily in security cameras. Many cameras include a UTP output with screw terminals; UTP cable bandwidth has improved to match the baseband of television signals. As UTP is a balanced transmission line, a balun is needed to connect to unbalanced equipment, for example any using BNC connectors and designed for coaxial cable.

Cable shielding

F/UTP cable
S/FTP cable
U/FTP, F/UTP and F/FTP are used in Cat.6a cables

Twisted pair cables are often shielded in an attempt to prevent electromagnetic interference. Shielding provides an electrically conductive barrier to attenuate electromagnetic waves external to the shield, and provides a conduction path by which induced currents can be circulated and returned to the source, via ground reference connection.

This shielding can be applied to individual pairs or quads, or to the collection of pairs. Individual pairs are foiled, while overall cable may use braided screen, foil, or braiding with foil.

When shielding is applied to the collection of pairs, this is usually referred to as screening, but different vendors and authors use "screening", "shielding", and "STP" inconsistently to denote various shielded cable types.[4][5]

ISO/IEC 11801:2002 (Annex E) attempts to internationally standardize the various designations for shielded cables by using combinations of three letters - U for unshielded, S for braided shielding (in outer layer only), and F for foiled shielding - to explicitly indicate the type of screen for overall cable protection and for individual pairs or quads, using a two-part abbreviation in the form of x/xTP.

Shielded Cat. 5e, Cat. 6/6A, and Cat 8/8.1 cables typically have F/UTP construction, while shielded Cat. 7/7A and Cat. 8.2 cables use S/FTP construction.[6]

Because the shielding is made of metal, it may also serve as a ground. Usually a shielded twisted pair cable has a special grounding wire added called a drain wire which is electrically connected to the shield or screen. The drain wire simplifies connection to ground at the connectors.

Common shield construction types used include:

Individual shield (U/FTP)
Individual shielding with aluminum foil for each twisted pair or quad. Common names: pair in metal foil, shielded twisted pair, screened twisted pair. This type of shielding protects cable from external EMI entering or exiting the cable and also protects neighboring pairs from crosstalk.
Overall shield (F/UTP, S/UTP, and SF/UTP)
Overall foil, braided shield or braiding with foil across all of the pairs within the 100 Ohm twisted pair cable. Common names: foiled twisted pair, shielded twisted pair, screened twisted pair. This type of shielding helps prevent EMI from entering or exiting the cable.
Individual and overall shield (F/FTP, S/FTP, and SF/FTP)
Individual shielding using foil between the twisted pair sets, and also an outer foil and/or braided shielding. Common names: fully shielded twisted pair, screened foiled twisted pair, shielded foiled twisted pair, screened shielded twisted pair, shielded screened twisted pair. This type of shielding helps prevent EMI from entering or exiting the cable and also protects neighboring pairs from crosstalk.

An early example of shielded twisted-pair is IBM STP-A, which was a two-pair 150 ohm S/FTP cable defined in 1985 by the IBM Cabling System specifications, and used with token ring or FDDI networks.[4][7]

Common industry abbreviations for cable construction
Industry acronyms ISO/IEC 11801 name Cable shielding Pair shielding
UTP U/UTP none none
STP, ScTP, PiMF U/FTP none foil
FTP, STP, ScTP F/UTP foil none
STP, ScTP S/UTP braiding none
SFTP, S-FTP, STP SF/UTP braiding, foil none
FFTP F/FTP foil foil
SSTP, SFTP, STP PiMF S/FTP braiding foil
SSTP, SFTP SF/FTP braiding, foil foil

The code before the slash designates the shielding for the cable itself, while the code after the slash determines the shielding for the individual pairs:

U = unshielded
F = foil shielding
S = braided shielding (outer layer only)
TP = twisted pair
TQ = twisted pair, individual shielding in quads

Most common twisted-pair cables

Name Typical construction Bandwidth Applications Notes
Level 1 0.4 MHz Telephone and modem lines Not described in EIA/TIA recommendations. Unsuitable for modern systems.[8]
Level 2 4 MHz Older terminal systems, e.g. IBM 3270 Not described in EIA/TIA recommendations. Unsuitable for modern systems.[8]
Cat.3 UTP[9] 16 MHz[9] 10BASE-T and 100BASE-T4 Ethernet[9] Described in EIA/TIA-568. Unsuitable for speeds above 16 Mbit/s. Now mainly for telephone cables[9]
Cat.4 UTP[9] 20 MHz[9] 16 Mbit/s[9] Token Ring Not commonly used[9]
Cat.5 UTP[9] 100 MHz[9] 100BASE-TX & 1000BASE-T Ethernet[9] Common for current LANs. Superseded by Cat5e, but most Cat5 cable meets Cat5e standards.[9]
Cat.5e UTP[9] 100 MHz[9] 100BASE-TX & 1000BASE-T Ethernet[9] Enhanced Cat5. Common for current LANs. Same construction as Cat5, but with better testing standards.[9]
Cat.6 UTP[9] 250 MHz[9] 10GBASE-T Ethernet ISO/IEC 11801 2nd Ed. (2002), ANSI/TIA 568-B.2-1. Most commonly installed cable in Finland according to the 2002 standard EN 50173-1.
Cat.6A U/FTP, F/UTP 500 MHz 10GBASE-T Ethernet Adds cable shielding. ISO/IEC 11801 2nd Ed. Am. 2. (2008), ANSI/TIA-568-C.1 (2009)
Cat.7 F/FTP, S/FTP 600 MHz 10GBASE-T Ethernet. POTS/CATV/1000BASE-T over single cable. Fully shielded cable. ISO/IEC 11801 2nd Ed. (2002)
Cat.7A F/FTP, S/FTP 1000 MHz 10GBASE-T Ethernet. POTS/CATV/1000BASE-T over single cable. Uses all four pairs. ISO/IEC 11801 2nd Ed. Am. 2. (2008)
Cat.8/8.1 U/FTP, F/UTP 1600-2000 MHz 40GBASE-T Ethernet. POTS/CATV/1000BASE-T over single cable. In development (ANSI/TIA-568-C.2-1, ISO/IEC 11801 3rd Ed.)
Cat.8.2 F/FTP, S/FTP 1600-2000 MHz 40GBASE-T Ethernet. POTS/CATV/1000BASE-T over single cable. In development (ISO/IEC 11801 3rd Ed.)

Solid core cable vs stranded cable

A solid core cable uses one solid wire per conductor and in a four pair cable there would be a total of eight solid wires.[9] Stranded conductor uses multiple wires wrapped around each other in each conductor and in a four pair with seven strands per conductor cable, there would be a total of 56 wires (2 per pair x 4 pairs x 7 strands).[9]

Solid core cable is intended for permanently installed runs. It is less flexible than stranded cable and is more prone to failure if repeatedly flexed. Stranded cable is used for fly leads at patch panel and for connections from wall-ports to end devices, as it resists cracking of the conductors.

Connectors need to be designed differently for solid core than for stranded. Use of a connector with the wrong cable type is likely to lead to unreliable cabling. Plugs designed for solid and stranded core are readily available, and some vendors even offer plugs designed for use with both types. The punch-down blocks on patch-panel and wall port jacks are designed for use with solid core cable.


  • Electrical noise going into or coming from the cable can be prevented.[10]
  • Cross-talk is minimized.[10]


  • Twisted pair's susceptibility to electromagnetic interference greatly depends on the pair twisting schemes (usually patented by the manufacturers) staying intact during the installation. As a result, twisted pair cables usually have stringent requirements for maximum pulling tension as well as minimum bend radius. This relative fragility of twisted pair cables makes the installation practices an important part of ensuring the cable's performance.
  • In analog video applications that send information across multiple parallel signal wires, twisted pair cabling can introduce signaling delays known as skew which cause subtle color defects and ghosting due to the image components not aligning correctly when recombined in the display device. The skew occurs because twisted pairs within the same cable often use a different number of twists per meter in order to prevent crosstalk between pairs with identical numbers of twists. The skew can be compensated by varying the length of pairs in the termination box, in order to introduce delay lines that take up the slack between shorter and longer pairs, though the precise lengths required are difficult to calculate and vary depending on the overall cable length.

Minor twisted pair variants

Loaded twisted pair
A twisted pair that has intentionally added inductance, formerly common practice on telecommunication lines. The added inductors are known as load coils and reduce attenuation for voiceband frequencies but increase it on higher frequencies. Load coils prevent distortion in voiceband on very long lines.[11] In this context a line without load coils is referred to as an unloaded line.
Bonded twisted pair
A twisted pair variant in which the pairs are individually bonded to increase robustness of the cable. Pioneered by Belden, it means the electrical specifications of the cable are maintained despite rough handling.
Twisted ribbon cable
A variant of standard ribbon cable in which adjacent pairs of conductors are bonded and twisted together. The twisted pairs are then lightly bonded to each other in a ribbon format. Periodically along the ribbon there are short sections with no twisting to enable connectors and PCB headers to be terminated using the usual ribbon cable IDC techniques.

See also


  1. ^
  2. ^ US 244426, Bell, Alexander Graham, "Telephone-circuit", issued 1881 . See also TIFF format scans for USPTO 00244426
  3. ^ Networks: Design and Management
  4. ^ a b Anitech Systems MP 4000 Manual
  5. ^ Grounding for Screened and Shielded Network Cabling - Siemon
  6. ^
  7. ^
  8. ^ a b
  9. ^ a b c d e f g h i j k l m n o p q r s t
  10. ^ a b
  11. ^ Understanding Line , visited 2012-06-04

External links

  • Telecommunications Virtual Museum
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.