World Library  
Flag as Inappropriate
Email this Article

Wine chemistry

Article Id: WHEBN0032186253
Reproduction Date:

Title: Wine chemistry  
Author: World Heritage Encyclopedia
Language: English
Subject: Wine, Areni-1 winery, Wine bottle, Precision viticulture, History of the wine press
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Wine chemistry

280 nm 45 min LC chromatogram of a red wine, showing mainly phenolic compounds.

Wine is a complex mixture of chemical compounds in a hydro-alcoholic solution with a pH around 3.

Types of natural molecules present in wine

Volatiles

Other molecules found in wine

Conservatives

Fining agents

Gum arabic has been used in the past as fining agent.[9]

List of additives permitted for use in the production of wine under EU law:
Type or purpose of addition Permitted additives
Acidification tartaric acid
Clarification calcium alginate

potassium alginate
potassium caseinate
casein
isinglass
silicon dioxide
edible gelatine
acacia (gum arabic)
milk/lactalbumin
proteins of plant origin
ovalbumin (egg white)
alumino silicates
ferrous sulfate

Decolourants polyvinyl-polypyr-rolidone (PVPP)

activated charcoal

Deacidification lactic bacteria

neutral potassium tartrate
potassium bicarbonate
calcium carbonate

Deodorant copper sulfate
Elaboration oak chips

metatartaric acid
water

Enrichment concentrated grape must

rectified concentrated grape must
saccharose
tannin
oxygen

Enzymes betaglucanase

pectolytics
urease

Fermentation fresh lees

ammonium bisulphite
thiamine hydrochloride
yeast cell walls
yeasts for wine production
diammonium phosphate
ammonium sulphate
ammonium sulphite

Sequestrants fresh lees

potassium ferrocyanide
calcium phytate
citric acid

Stabilisation calcium tartrate

potassium bitartrate
yeast mannoproteins
Preservatives sorbic acid
sulphur dioxide
argon
nitrogen
potassium bisulphite
dimethyl dicarbonate (DMDC)
carbon dioxide
potassium metabisulphite/disulfite
allyl isothiocyanate
lysozyme
potassium sorbate
ascorbic acid

Others

Wine faults

2,4,6-trichloroanisole, the chemical primarily responsible for cork taint in wines.

4-Ethylphenol is produced from the precursor p-coumaric acid. Brettanomyces converts this to 4-vinylphenol via the enzyme cinnamate decarboxylase.[11] 4-Vinylphenol is further reduced to 4-ethylphenol by the enzyme vinyl phenol reductase. Coumaric acid is sometimes added to microbiological media, enabling the positive identification of Brettanomyces by smell.

Geraniol is a by-product of the metabolism of sorbate and, thus, is a very unpleasant contaminant of wine if bacteria are allowed to grow in wine.

Fusel alcohols are a mixture of several alcohols (chiefly amyl alcohol) produced as a by-product of alcoholic fermentation.

See also

Notes

  1. ^ Monoterpenes in grape juice and wines. M. Jiménez, Journal of Chromatography A, Volume 881, Issues 1–2, 9 June 2000, Pages 557–567, doi:10.1016/S0021-9673(99)01342-4
  2. ^ Terpenes in the aroma of grapes and wines: A review. J. Marais, S. Afr. J. Enol. Vitic., 1983, volume 4, number 2, pages 49-58 (article)
  3. ^ Inhibition of the decline of linalool and α-terpineol in muscat wines by glutathione and N-acetyl-cysteine. Papadopoulou D. and Roussis I. G., Italian journal of food science, 2001, vol. 13, no4, pages 413-419, INIST:13441184
  4. ^ Using LC-MSMS To Assess Glutathione Levels in South African White Grape Juices and Wines Made with Different Levels of Oxygen. Wessel Johannes Du Toit, Klemen Lisjak, Maria Stander and Dersiree Prevoo, J. Agric. Food Chem., 2007, Vol. 55, No. 8, doi:10.1021/jf062804p
  5. ^ Günata, Ziya; Wirth, Jérémie L.; Guo, Wenfei; Baumes, Raymond L. (2001). "Carotenoid-Derived Aroma Compounds". ACS Symposium Series 802. p. 255.  
  6. ^ P. Winterhalter, M. A. Sefton and P. J. Williams (1990). "Volatile C13-Norisoprenoid Compounds in Riesling Wine Are Generated From Multiple Precursors". Am. J. Enol. Vitic 41 (4): 277–283. 
  7. ^ Zelena, Kateryna; Hardebusch, Björn; Hülsdau, BäRbel; Berger, Ralf G.; Zorn, Holger (2009). "Generation of Norisoprenoid Flavors from Carotenoids by Fungal Peroxidases". Journal of Agricultural and Food Chemistry 57 (21): 9951–5.  
  8. ^ Cabaroglu, Turgut; Selli, Serkan; Canbas, Ahmet; Lepoutre, Jean-Paul; Günata, Ziya (2003). "Wine flavor enhancement through the use of exogenous fungal glycosidases". Enzyme and Microbial Technology 33 (5): 581.  
  9. ^ Vivas N, Vivas de Gaulejac N, Nonier M.F and Nedjma M (2001). "Incidence de la gomme arabique sur l'astringence des vins et leurs stabilites colloidales" [Effect of gum arabic on wine astringency and colloidal stability]. Progres Agricole et Viticole (in French) 118 (8): 175–176. 
  10. ^ Lamont, Kim T.; Somers, Sarin; Lacerda, Lydia; Opie, Lionel H.; Lecour, Sandrine (2011). "Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection". Journal of Pineal Research 50 (4): 374–80.  
  11. ^ Brettanomyces Monitoring by Analysis of 4-ethylphenol and 4-ethylguaiacol at etslabs.com

References

  • Comprehensive Natural Products II — Chemistry and Biology, chapter 3.26 – Chemistry of Wine, volume 3, pages 1119–1172. Véronique Cheynier, Rémi Schneider, Jean-Michel Salmon and Hélène Fulcrand, doi:10.1016/B978-008045382-8.00088-5

External links

  • Wine Chemistry and Biochemistry. by M. Victoria Moreno-Arribas,Carmen Polo and María Carmen Polo, on Google books
  • Mass Spectrometry in Grape and Wine Chemistry. by Riccardo Flamini and Pietro Traldi, on Google books
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.