World Library  
Flag as Inappropriate
Email this Article

Disaccharide

Article Id: WHEBN0000008464
Reproduction Date:

Title: Disaccharide  
Author: World Heritage Encyclopedia
Language: English
Subject: Carbohydrate, Fructose, Sucrose, Glucose, Lactose intolerance
Collection: Carbohydrate Chemistry, Disaccharides
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Disaccharide

A disaccharide or biose[1] is the carbohydrate which is formed when two monosaccharides (simple sugars) undergo a condensation reaction which involves the elimination of a small molecule, such as water, from the functional groups only. Like monosaccharides, disaccharides are soluble in water. Three common references are sucrose, lactose,[2] and maltose.

"Disaccharide" is one of the four chemical groupings of carbohydrates (monosaccharide, disaccharide, oligosaccharide, and polysaccharide).

The most common types of disaccharides—sucrose, lactose, and maltose—have twelve carbon atoms, with the general formula C12H22O11. The differences in the disaccharides are due to atomic arrangements within the molecule.[3]

Contents

  • Classification 1
  • Formation 2
  • Properties 3
  • Assimilation 4
  • Common disaccharides 5
  • References 6
  • External links 7

Classification

There are two different types of disaccharides:

  • Reducing disaccharides, in which one monosaccharide, the reducing sugar, still has a free hemiacetal unit; and non-reducing disaccharides, in which the components bond through an acetal linkage between their anomeric centers and neither monosaccharide has a free hemiacetal unit. Cellobiose and maltose are examples of reducing disaccharides.
  • Sucrose and trehalose are examples of non-reducing disaccharides.

[4] [5]

Formation

Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose. Maltose, another notable disaccharide, is made up of two glucose molecules.[6] The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond.[7]

Properties

The glycosidic bond can be formed between any hydroxyl group on the component monosaccharide. So, even if both component sugars are the same (e.g., glucose), different bond combinations (regiochemistry) and stereochemistry (alpha- or beta-) result in disaccharides that are diastereoisomers with different chemical and physical properties.

Depending on the monosaccharide constituents, disaccharides are sometimes crystalline, sometimes water-soluble, and sometimes sweet-tasting and sticky-feeling.

Assimilation

Digestion involves breakdown to the monosaccharides. carbohydrate digestion

Common disaccharides

Disaccharide Unit 1 Unit 2 Bond
Sucrose (table sugar, cane sugar, beet sugar, or saccharose) Glucose Fructose α(1→2)β
Lactulose Galactose Fructose β(1→4)
Lactose (milk sugar) Galactose Glucose β(1→4)
Maltose (malt sugar) Glucose Glucose α(1→4)
Trehalose Glucose Glucose α(1→1)α
Cellobiose Glucose Glucose β(1→4)
Chitobiose Glucosamine Glucosamine β(1→4)

Maltose, cellobiose, and chitobiose are hydrolysis products of the polysaccharides starch, cellulose, and chitin, respectively.

Less common disaccharides include:[8]

Disaccharide Units Bond
Kojibiose two glucose monomers α(1→2) [9]
Nigerose two glucose monomers α(1→3)
Isomaltose two glucose monomers α(1→6)
β,β-Trehalose two glucose monomers β(1→1)β
α,β-Trehalose two glucose monomers α(1→1)β[10]
Sophorose two glucose monomers β(1→2)
Laminaribiose two glucose monomers β(1→3)
Gentiobiose two glucose monomers β(1→6)
Turanose a glucose monomer and a fructose monomer α(1→3)
Maltulose a glucose monomer and a fructose monomer α(1→4)
Palatinose a glucose monomer and a fructose monomer α(1→6)
Gentiobiulose a glucose monomer and a fructose monomer β(1→6)
Mannobiose two mannose monomers either α(1→2), α(1→3), α(1→4), or α(1→6)
Melibiose a galactose monomer and a glucose monomer α(1→6)
Melibiulose a galactose monomer and a fructose monomer α(1→6)
Rutinose a rhamnose monomer and a glucose monomer α(1→6)
Rutinulose a rhamnose monomer and a fructose monomer β(1→6)
Xylobiose two xylopyranose monomers β(1→4)

References

  1. ^ Biose on www.merriam-webster.org
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "disaccharides".
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.