World Library  
Flag as Inappropriate
Email this Article

Cyclin-dependent kinase 9

Article Id: WHEBN0012303217
Reproduction Date:

Title: Cyclin-dependent kinase 9  
Author: World Heritage Encyclopedia
Language: English
Subject: Postreplication checkpoint, Cellular apoptosis susceptibility protein, Cyclin B2, CDKN2D, Start point (yeast)
Collection: Cell Cycle, Proteins
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cyclin-dependent kinase 9

Cyclin-dependent kinase 9

Rendering based on PDB .
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols  ; C-2k; CDC2L4; CTK1; PITALRE; TAK
External IDs ChEMBL: GeneCards:
EC number
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Cyclin-dependent kinase 9 or CDK9 is a cyclin-dependent kinase associated with P-TEFb.

Contents

  • Function 1
  • Interactions 2
  • References 3
  • Further reading 4
  • External links 5

Function

The protein encoded by this gene is a member of the cyclin-dependent kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS.[1]

CDK9 is also known to associate with other proteins such as TRAF2, and be involved in differentiation of skeletal muscle.[2]

Interactions

CDK9 has been shown to interact with:

References

  1. ^ "Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)". 
  2. ^ MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, Giordano A (1998). "Binding of CDK9 to TRAF2". J. Cell. Biochem. 71 (4): 467–78.  
  3. ^ Lee DK, Duan HO, Chang C (March 2001). "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". J. Biol. Chem. 276 (13): 9978–84.  
  4. ^ a b c Kiernan RE, Emiliani S, Nakayama K, Castro A, Labbé JC, Lorca T, Nakayama Ki K, Benkirane M (December 2001). "Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome". Mol. Cell. Biol. 21 (23): 7956–70.  
  5. ^ a b Fu TJ, Peng J, Lee G, Price DH, Flores O (December 1999). "Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription". J. Biol. Chem. 274 (49): 34527–30.  
  6. ^ a b Peng J, Zhu Y, Milton JT, Price DH (March 1998). "Identification of multiple cyclin subunits of human P-TEFb". Genes Dev. 12 (5): 755–62.  
  7. ^ Cabart P, Chew HK, Murphy S (July 2004). "BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II". Oncogene 23 (31): 5316–29.  
  8. ^ Young TM, Wang Q, Pe'ery T, Mathews MB (September 2003). "The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. 23 (18): 6373–84.  
  9. ^ Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O (July 2003). "MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner". Mol. Cell. Biol. 23 (14): 4859–69.  
  10. ^ Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T (March 2003). "The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. 23 (5): 1688–702.  
  11. ^ a b De Falco G, Bagella L, Claudio PP, De Luca A, Fu Y, Calabretta B, Sala A, Giordano A (January 2000). "Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation". Oncogene 19 (3): 373–9.  
  12. ^ a b Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA (September 2000). "CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA". Mol. Cell. Biol. 20 (18): 6958–69.  
  13. ^ Amini S, Clavo A, Nadraga Y, Giordano A, Khalili K, Sawaya BE (August 2002). "Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells". Oncogene 21 (37): 5797–803.  
  14. ^ Simone C, Bagella L, Bellan C, Giordano A (June 2002). "Physical interaction between pRb and cdk9/cyclinT2 complex". Oncogene 21 (26): 4158–65.  

Further reading

  • Jeang KT (1998). "Tat, Tat-associated kinase, and transcription.". J. Biomed. Sci. 5 (1): 24–7.  
  • Yankulov K, Bentley D (1998). "Transcriptional control: Tat cofactors and transcriptional elongation.". Curr. Biol. 8 (13): R447–9.  
  • Romano G, Kasten M, De Falco G, et al. (2000). "Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.". J. Cell. Biochem. 75 (3): 357–68.  
  • Marcello A, Zoppé M, Giacca M (2002). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator.". IUBMB Life 51 (3): 175–81.  
  • Huigen MC, Kamp W, Nottet HS (2004). "Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection.". Eur. J. Clin. Invest. 34 (1): 57–66.  
  • Rice AP, Herrmann CH (2004). "Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages.". Curr. HIV Res. 1 (4): 395–404.  
  • Minghetti L, Visentin S, Patrizio M, et al. (2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions.". Neurochem. Res. 29 (5): 965–78.  
  • Liou LY, Herrmann CH, Rice AP (2005). "HIV-1 infection and regulation of Tat function in macrophages.". Int. J. Biochem. Cell Biol. 36 (9): 1767–75.  
  • Pugliese A, Vidotto V, Beltramo T, et al. (2005). "A review of HIV-1 Tat protein biological effects.". Cell Biochem. Funct. 23 (4): 223–7.  
  • Bannwarth S, Gatignol A (2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host.". Curr. HIV Res. 3 (1): 61–71.  
  • Gibellini D, Vitone F, Schiavone P, Re MC (2005). "HIV-1 tat protein and cell proliferation and survival: a brief review.". New Microbiol. 28 (2): 95–109.  
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis.". Front. Biosci. 11: 708–17.  

External links


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.