#jsDisabledContent { display:none; } My Account |  Register |  Help

Article Id: WHEBN0000098132
Reproduction Date:

 Title: Radio wave Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

Animation of a half-wave dipole antenna radiating radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods, with an alternating current applied at its center from a radio transmitter (not shown). The voltage charges the two sides of the antenna alternately positive (+) and negative (−). Loops of electric field (black lines) leave the antenna and travel away at the speed of light; these are the radio waves. The action is drastically slowed down in this animation.

To prevent interference between different users, the artificial generation and use of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU). The radio spectrum is divided into a number of radio bands on the basis of frequency, allocated to different uses.

Diagram of the electric fields (E) and magnetic fields (H) of radio waves emitted by a monopole radio transmitting antenna (small dark vertical line in the center). The E and H fields are perpendicular as implied by the phase diagram in the lower right.

## Contents

• Discovery and utilization 1
• Propagation 2
• Speed, wavelength and frequency 3
• Radio communication 4
• Notes 6
• References 7

## Discovery and utilization

Rough plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation, including radio waves.

Radio waves were first predicted by mathematical work done in 1867 by Scottish mathematical physicist James Clerk Maxwell.[1] Maxwell noticed wavelike properties of light and similarities in electrical and magnetic observations. His mathematical theory, now called Maxwell's equations, described light waves and radio waves as waves of electromagnetism that travel in space, radiated by a charged particle as it undergoes acceleration. In 1887, Heinrich Hertz demonstrated the reality of Maxwell's electromagnetic waves by experimentally generating radio waves in his laboratory,[2] showing that they exhibited the same wave properties as light: standing waves, refraction, diffraction, and polarization. Radio waves were first used for communication in the mid 1890s by Guglielmo Marconi, who developed the first practical radio transmitters and receivers.

## Propagation

The study of electromagnetic phenomena such as reflection, refraction, polarization, diffraction, and absorption is of critical importance in the study of how radio waves move in free space and over the surface of the Earth. Different frequencies experience different combinations of these phenomena in the Earth's atmosphere, making certain radio bands more useful for specific purposes than others.

## Speed, wavelength and frequency

Radio waves travel at the speed of light.[3][4] When passing through an object, they are slowed according to that object's permeability and permittivity.

The wavelength is the distance from one peak of the wave's electric field to the next, and is inversely proportional to the frequency of the wave. The distance a radio wave travels in one second, in a vacuum, is 299,792,458 meters (983,571,056 ft) which is the wavelength of a 1 hertz radio signal. A 1 megahertz radio signal has a wavelength of 299.8 meters (984 ft).

In order to receive radio signals, for instance from AM/FM radio stations, a radio antenna must be used. However, since the antenna will pick up thousands of radio signals at a time, a radio tuner is necessary to tune in a particular signal.[5] This is typically done via a resonator (in its simplest form, a circuit with a capacitor, inductor, or crystal oscillator, but many modern radios use Phase Locked Loop systems). The resonator is configured to resonate at a particular frequency, allowing the tuner to amplify sine waves at that radio frequency and ignore other sine waves. Usually, either the inductor or the capacitor of the resonator is adjustable, allowing the user to change the frequency at which it resonates.[6]

## Notes

1. ^ Harman, Peter Michael (1998). The natural philosophy of James Clerk Maxwell. Cambridge, England: Cambridge University Press. p. 6.
2. ^ "Heinrich Hertz: The Discovery of Radio Waves". Juliantrubin.com. Retrieved 2011-11-08.
3. ^ http://www.1728.org/freqwave.htm
5. ^ Brain, Marshall (2000-12-07). "How Radio Works". HowStuffWorks.com. Retrieved 2009-09-11.
6. ^ Brain, Marshall (2000-12-08). "How Oscillators Work". HowStuffWorks.com. Retrieved 2009-09-11.

## References

• James Clerk Maxwell, "A Dynamical Theory of the Electromagnetic Field", Philosophical Transactions of the Royal Society of London 155, 459-512 (1865).
• Heinrich Hertz: "Electric waves; being researches on the propagation of electric action with finite velocity through space" (1893). Cornell University Library Historical Monographs Collection. Reprinted by Cornell University Library Digital Collections.
• Karl Rawer: "Wave Propagation in the Ionosphere". Kluwer, Dordrecht 1993. ISBN 0-7923-0775-5
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.