World Library  
Flag as Inappropriate
Email this Article

Service life

Article Id: WHEBN0000577991
Reproduction Date:

Title: Service life  
Author: World Heritage Encyclopedia
Language: English
Subject: Electrolytic capacitor, Hydrogen sensor, INS Vikramaditya, Micro combined heat and power, Fuel cell
Collection: Product Management
Publisher: World Heritage Encyclopedia

Service life

A product's service life is its expected lifetime, or the acceptable period of use in service. It is the time that any manufactured item can be expected to be 'serviceable' or supported by its manufacturer.

Expected service life consists of business policy, using tools and calculations from maintainability and reliability analysis. Service life is a unique commitment made by the item's manufacturer and is usually specified as a median. Actual service life is the maximal recorded life of a product.

Service life is different from a predicted life, or MTTF/MTBF (Mean Time to Failure/Mean Time Between Failures)/MFOP (maintenance-free operating period). Predicted life is useful such that a manufacturer may estimate, by hypothetical modeling and calculation, a general rule for which it will honor warranty claims, or planning for mission fulfillment. The difference between service life and predicted life is most clear when considering mission time and reliability in comparison to MTBF and service life.

For example: A missile system can have a mission time of less than one minute, a service life of 20 years, active MTBF of 20 minutes, dormant MTBF of 50 years and a reliability of .999999.

A consumer item will have different expectations about service and longevity[1] based upon factors such as use, cost, and quality.


  • Product strategy 1
  • Examples 2
  • BOL and EOL 3
  • See also 4
  • References 5

Product strategy

Manufacturers will commit to very conservative service life, usually 2 to 5 years for most commercial and consumer products (for example computer peripherals and components). However, for large and expensive durable goods, the items are not consumable, and service lives and maintenance activity will factor large in the service life. Again, an airliner might have a mission time of 11 hours, a predicted active MTBF of 10,000 hours with maintenance (or 15,000 hours without maintenance), a reliability of .99999 and a service life of 40 years.

The most common model for item lifetime is the bathtub curve, a plot of the varying failure rate as a function of time. During early life, the bathtub shows increased failures, usually witnessed during product development. The middle portion of the bathtub, or 'useful life', is a slightly inclined, nearly constant failure rate period where the consumer enjoys the benefit conferred by the product. As the time increases further, the curve reaches a period of increasing failures, modeling the product's wearout phase.

For an individual product, the component parts may each have independent service lives, resulting in several bathtub curves. For instance, a tire will have a service life partitioning related to the tread and the casing.


For maintainable items, those wear-out items that are determined by logistical analysis to be provisioned for sparing and replacement will assure a longer service life than manufactured items without such planning. A simple example is automotive tires - failure to plan for this wear out item would limit automotive service life to the extent of a single set of tires.

An individual tire's life follows the bathtub curve, to boot. After installation, there is a not-small probability of failure which may be related to material or workmanship or even to the process for mounting the tire which may introduce some small damage. After the initial period, the tire will perform, given no defect introducing event such as encountering a road hazard (a nail or a pothole), for a long duration relative to its expected service life which is a function of several variables (design, material, process). After a period, the failure probability will rise; for some tires, this will occur after the tread is worn out. Then, a secondary market for tires puts a retread on the tire thereby extending the service life. It is not uncommon for an 80,000-mile tire to perform well beyond that limit.[2]

It may be difficult to obtain reliable longevity data about many consumer products as, in general, efforts at actuarial analysis are not taken to the same extent as found with that needed to support insurance decisions. However, some attempts to provide this type of information have been made. An example is the collection of estimates for household components provided by the Old House Web[3] which gathers data from the Appliance Statistical Review and various institutes involved with the homebuilding trade.


For certain products, such as those that cannot be serviced during their operational life for technical reasons, a manufacturer may calculate a product's expected performance at both the beginning of operational life (BOL) and end of operational life (EOL). Batteries and other components that degrade over time may affect the operation of a product. The performance of mission critical components is therefore calculated for EOL, with the components exceeding their specification at BOL. For example, with spaceflight hardware, which must survive in the harsh environment of space, the capacity to generate electricity from solar panels or radioisotope thermoelectric generator is likely to reduce throughout a mission, but must still meet a specific requirement at EOL in order to complete the mission. A spacecraft may also have a BOL mass that is greater than its EOL mass as propellant is depleted during its operational life.

See also


  1. ^ "Drive it forever" Club Lexus Forums
  2. ^ Tire Retread Information Bureau
  3. ^ Old House Web, "Life Expectancy of Household Components
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.