World Library  
Flag as Inappropriate
Email this Article

Flavones

Article Id: WHEBN0005958276
Reproduction Date:

Title: Flavones  
Author: World Heritage Encyclopedia
Language: English
Subject: Flavones, List of MeSH codes (D03), Flavonoids, Xenoestrogens, Flavan-4-ol
Collection: Flavones
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Flavones

Molecular structure of the flavone backbone with numbers

Flavones (flavus = yellow), are a class of flavonoids based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) shown on the right.

Natural flavones include apigenin (4',5,7-trihydroxyflavone), luteolin (3',4',5,7-tetrahydroxyflavone), tangeritin (4',5,6,7,8-pentamethoxyflavone), chrysin (5,7-dihydroxyflavone), 6-hydroxyflavone, baicalein (5,6,7-trihydroxyflavone), scutellarein (5,6,7,4'-tetrahydroxyflavone), and wogonin (5,7-dihydroxy-8-methoxyflavone). Synthetic flavones include diosmin, flavoxate, and 7,8-dihydroxyflavone.

Flavone also refers to the flavone compound 2-phenyl-4H-chromen-4-one.[1][2]

Contents

  • Intake and putative beneficial effects 1
  • Drug interactions 2
  • Organic chemistry 3
    • Wessely–Moser rearrangement 3.1
  • References 4
  • External links 5

Intake and putative beneficial effects

Flavones are mainly found in cereals and herbs. In the West, the estimated daily intake of flavones is in the range 20–50 mg per day.[3] In recent years, scientific and public interest in flavones has grown, but there remains insufficient evidence that flavones have any effect in the human body. As interpreted by the Linus Pauling Institute, dietary flavones, and more generally polyphenols, have little or no direct antioxidant food value following digestion.[4] Not like controlled test tube conditions, the fate of flavones or polyphenols in vivo shows they are poorly conserved (less than 5%), with most of what is absorbed existing as metabolites modified during digestion and destined for rapid excretion.[5]

Drug interactions

Flavones have effects on CYP (P450) activity [6][7] which are enzymes that metabolize most drugs in the body.

Organic chemistry

In organic chemistry several methods exist for the synthesis of flavones:

Another method is the dehydrative cyclization of certain 1,3-diaryl diketones [8]

Flavone synthesis from 1,3-ketones

this particular study making use of an ionic liquid solvent and microwave irradiation.

Wessely–Moser rearrangement

The Wessely–Moser rearrangement (1930)[9] has been an important tool in structure elucidation of flavonoids. It involves the conversion of 5,7,8-trimethoxyflavone into 5,6,7-trihydroxyflavone on hydrolysis of the methoxy groups to phenol groups. It also has synthetic potential for example:[10]

Wessely–Moser rearrangement

This rearrangement reaction takes place in several steps: A ring opening to the diketone, B bond rotation with formation of a favorable acetylacetone-like phenyl-ketone interaction and C hydrolysis of two methoxy groups and ring closure.

References

  1. ^ http://proj3.sinica.edu.tw/~chem/servxx6/files/paper_7744_1269418157.pdf
  2. ^ http://www.chemspider.com/Chemical-Structure.10230.html
  3. ^ Cermak R, Wolffram S (October 2006). "The potential of flavonoids to influence drug metabolism and pharmacokinetics by local gastrointestinal mechanisms". Curr. Drug Metab. 7 (7): 729–44.  
  4. ^ Lotito, S; Frei, B (2006). "Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon?". Free Radical Biology and Medicine 41 (12): 1727–46.  
  5. ^ David Stauth (5 March 2007). "Studies force new view on biology of flavonoids". EurekAlert!; Adapted from a news release issued by Oregon State University. 
  6. ^ Cermak R, Wolffram S., The potential of flavonoids to influence drug metabolism and pharmacokinetics by local gastrointestinal mechanisms,Curr Drug Metab. 2006 Oct;7(7):729-44.
  7. ^ Si D, Wang Y, Zhou YH; et al. (March 2009). "Mechanism of CYP2C9 inhibition by flavones and flavonols". Drug Metab. Dispos. 37 (3): 629–34.  [2]
  8. ^ Sarda SR, Pathan MY, Paike VV, Pachmase PR, Jadhav WN, Pawar RP (2006). "A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation" (PDF).  
  9. ^ Wessely F, Moser GH (December 1930). "Synthese und Konstitution des Skutellareins". Monatsh. Chem. 56 (1): 97–105.  
  10. ^ Larget R, Lockhart B, Renard P, Largeron M (April 2000). "A convenient extension of the Wessely-Moser rearrangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro". Bioorg. Med. Chem. Lett. 10 (8): 835–8.  

External links


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.