World Library  
Flag as Inappropriate
Email this Article

Serca

Article Id: WHEBN0000697026
Reproduction Date:

Title: Serca  
Author: World Heritage Encyclopedia
Language: English
Subject: P-type ATPase, Calcium ATPase, Calsequestrin, Hydrogen potassium ATPase, ATP7A
Collection: Transmembrane Proteins
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Serca

SERCA, or sarco/endoplasmic reticulum Ca2+-ATPase, or SR Ca2+-ATPase, is a calcium ATPase-type P-ATPase.

Contents

  • Function 1
  • Regulation 2
  • Paralogs 3
  • References 4
  • External links 5

Function

SERCA resides in the sarcoplasmic reticulum (SR) within muscle cells. It is a Ca2+ ATPase that transfers Ca2+ from the cytosol of the cell to the lumen of the SR at the expense of ATP hydrolysis during muscle relaxation.

There are 3 major domains on the cytoplasmic face of SERCA: the phosphorylation and nucleotide-binding domains, which form the catalytic site, and the actuator domain, which is involved in the transmission of major conformational changes.

It seems that, in addition to the calcium-transporting properties, SERCA1 generates heat in some adipocytes.[1][2]

Regulation

The rate at which SERCA moves Ca2+ across the SR membrane can be controlled by the regulatory protein phospholamban (PLB/PLN). SERCA is normally inhibited by PLB, with which it is closely associated. Increased β-adrenergic stimulation reduces the association between SERCA and PLB by the phosphorylation of PLB by PKA.[3] When PLB is associated with SERCA, the rate of Ca2+ movement is reduced; upon dissociation of PLB, Ca2+ movement increases.

Another protein, calsequestrin, binds calcium within the SR and helps to reduce the concentration of free calcium within the SR, which assists SERCA so that it does not have to pump against such a high concentration gradient. The SR has a much higher concentration of Ca2+ (10,000x) inside when compared to the cytoplasmic Ca2+ concentration. SERCA2 can be regulated by microRNAs, for instance miR-25 suppresses SERCA2 in heart failure.

For experimental reasons, SERCA can be inhibited by thapsigargin and induced by istaroxime.

Paralogs

There are 3 major paralogs, SERCA1-3, which are expressed at various levels in different cell types.

There are additional post-translational isoforms of both SERCA2 and SERCA3, which serve to introduce the possibility of cell-type-specific Ca2+-reuptake responses as well as increasing the overall complexity of the Ca2+ signaling mechanism.

References

  1. ^ de Meis L, Oliveira GM, Arruda AP, Santos R, Costa RM, Benchimol M (2005). "The thermogenic activity of rat brown adipose tissue and rabbit white muscle Ca2+-ATPase". IUBMB Life 57 (4–5): 337–45.  
  2. ^ Arruda AP, Nigro M, Oliveira GM, de Meis L (June 2007). "Thermogenic activity of Ca2+-ATPase from skeletal muscle heavy sarcoplasmic reticulum: the role of ryanodine Ca2+ channel". Biochim. Biophys. Acta 1768 (6): 1498–505.  
  3. ^ MacLennan, David H.; Kranias, Evangelia G. (July 2003). "Phospholamban: a crucial regulator of cardiac contractility". Nature Reviews Molecular Cell Biology 4 (7): 566–577.  

External links

  • Sarcoplasmic Reticulum Calcium-Transporting ATPases at the US National Library of Medicine Medical Subject Headings (MeSH)

http://en.m.WorldHeritage.org/articles/Mir-25_microRNA_precursor_family

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.